Artificial Neural Network Based Self- Tunning Adaptive Power System Stabilizer
نویسنده
چکیده
This paper presents an approach to the design of self-tuning adaptive power system stabilizer which is based on artificial neural network. Result shows that ANN based power system stabilizer can provide good damping for both local and inter area modes of oscillations. An ANN is used for self-tuning the different parameters of PSS like stabilizing gain Kstab and time constant (T1) for Lead PSS in realtime. The nodes in the input layer of the ANN receive generator terminal active power (P) and reactive power (Q). Investigations are carried out to assess the dynamic performance of the system with self-tuning PSS based on ANN (ST-ANNPSS) over a wide range of loading conditions. The neural networks possess the capability to generalize, thus, they can predict new outcomes from past trends. The Matlab/Simulink‟s neural network toolbox is used to perform the simulations. The simulation and experimental results shows the effective dynamic performance of the proposed system.
منابع مشابه
A New Fuzzy Stabilizer Based on Online Learning Algorithm for Damping of Low-Frequency Oscillations
A multi objective Honey Bee Mating Optimization (HBMO) designed by online learning mechanism is proposed in this paper to optimize the double Fuzzy-Lead-Lag (FLL) stabilizer parameters in order to improve low-frequency oscillations in a multi machine power system. The proposed double FLL stabilizer consists of a low pass filter and two fuzzy logic controllers whose parameters can be set by the ...
متن کاملDesign of A Self-Tuning Adaptive Power System Stabilizer
Power system stabilizers (PSSs) must be capable of providing appropriate stabilization signals over abroad range of operating conditions and disturbances. The main idea of this paper is changing aclassic PSS (CPSS) to an adaptive PSS using genetic algorithm. This new genetic algorithm based onadaptive PSS (GAPSS) improves power system damping, considerably. The controller design issue isformula...
متن کاملStudies with a Generalized Neuron Based PSS on a Multi-Machine Power System
An artificial neural network can be used as an intelligent controller to control non-linear, dynamic system through learning. It can easily accommodate non-linearities and time dependencies. Most common multi-layer feed-forward neural networks have the drawbacks of large number of neurons and hidden layers required to deal with complex problems and require large training time. To overcome these...
متن کاملImprovement of Synchronous Machine Dynamic Characteristics via Neural Network Based Controllers
This paper presents Simulation and experimental study aimed at investigating the effectiveness of an adaptive artificial neural network stabilizer on enhancing the damping torque of a synchronous generator. For this purpose, a power system comprising a synchronous generator feeding a large power system through a short tie line is considered. The proposed adaptive neuro-control system consists o...
متن کاملEffect of Distributed Power-Flow Controller (DPFC) on Power System Stability
Distributed flexible AC- transmission system (D-FACTS) is a recently advanced FACTS device with high flexibility and smaller size. The DPFC can control power flow in transmission lines, regulate bus voltages and it can also enhance stability margin in power grids. Adaptive-neural network-based fuzzy inference system (ANFIS) combines features of artificial neural network and fuzzy controller. Th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013